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a b s t r a c t 

Large-scale atomistic computer simulations of materials rely on interatomic potentials providing compu- 

tationally efficient predictions of energy and Newtonian forces. Traditional potentials have served in this 

capacity for over three decades. Recently, a new class of potentials has emerged, which is based on a rad- 

ically different philosophy. The new potentials are constructed using machine-learning (ML) methods and 

a massive reference database generated by quantum-mechanical calculations. While the traditional po- 

tentials are derived from physical insights into the nature of chemical bonding, the ML potentials utilize 

a high-dimensional mathematical regression to interpolate between the reference energies. We review 

the current status of the interatomic potential field, comparing the strengths and weaknesses of the tra- 

ditional and ML potentials. A third class of potentials is introduced, in which an ML model is coupled 

with a physics-based potential to improve the transferability to unknown atomic environments. The dis- 

cussion is focused on potentials intended for materials science applications. Possible future directions in 

this field are outlined. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Atomic-scale computer simulations of materials constitute a 

ritical component of the multiscale materials modeling paradigm 

1–3] . They equip researchers with an effective tool for gaining 

undamental insights into microscopic mechanisms of processes 

ccurring in materials while also providing quantitative input to 

esoscale and continuum models. Modern molecular dynamics 

MD) 1 and Monte Carlo (MC) simulations span length scales from 

 single atom to ∼ 10 2 nm and time scales up to ∼ 10 2 ns. Access

o these length and time scales is enabled by classical interatomic 

otentials (also known as classical force fields), whose role is to 

redict the energy and classical forces acting on the atoms for any 

iven atomic configuration. Computations with classical potentials 

re fast and scale linearly with the number of atoms, making them 

he critical ingredient for all large-scale atomistic simulations. The 

ccuracy and reliability of atomistic simulations often depends on 

he quality of the interatomic potentials. 

The history of quantitative interatomic potentials can probably 

e counted from the 1980s when the first many-body potentials 

or metallic systems [4,5] and bond-order-type potentials for co- 
E-mail address: ymishin@gmu.edu 
1 See Appendix A for a list of abbreviations used in this article. 
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alent materials [6–9] were introduced, and their predictive capa- 

ilities were demonstrated in several successful applications. Since 

hen, potentials have been developed for most of the chemical 

lements (for some, several versions are available), for many bi- 

ary systems, and several ternary and higher-order systems. Many 

ew functional forms of the potentials have been proposed to im- 

rove the accuracy of representing the chemical bonding in various 

lasses of materials. 

The quality of the currently available potentials varies widely. 

ome reach the highest accuracy achievable with the limited num- 

er of fitting parameters, while there is a multitude of poor-quality 

otentials. Some potentials have been employed in hundreds of 

imulation studies by many groups worldwide, while others were 

ever used outside the original publication. The construction of 

igh-quality potentials heavily relies on human expertise and is 

onsidered a borderline between art and science [10,11] . Infras- 

ructure has been created for the development, testing, standard- 

zation, and storage of interatomic potentials, including the NIST 

nteratomic Potentials Repository [12–14] , the Knowledgebase of 

nteratomic Models (OpenKim) [15,16] , and potential development 

ools such as potfit [17–19] , KLIFF [20] and Atomicrex [21] . 

Over the past decade, a new direction has emerged in this field, 

herein the interatomic potentials are constructed by machine- 

earning (ML) methods, see for example [22–27] for recent reviews. 

https://doi.org/10.1016/j.actamat.2021.116980
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.116980&domain=pdf
mailto:ymishin@gmu.edu
https://doi.org/10.1016/j.actamat.2021.116980
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Table 1 

Comparison of three classes of interatomic potentials. 

Potential type 

Traditional ML Physically-informed ML 

Physical foundation Strong None Strong 

Number of fitting parameters ∼ 10 � 10 3 � 10 3 

Computational speed Very high Slower a Slower a 

Reference database Small Large Large 

Accuracy (interpolation) Limited ∼ 1 meV/atom ∼ 1 meV/atom 

Transferability (extrapolation) Reasonable Poor Reasonable 

Reliance on human expertise Strong Weaker b Weaker b 

Extension to chemistries Challenge Challenge Challenge 

Specific to class of materials? Yes No No 

Systematically improvable? No Yes Yes 

Can be made artificial? Yes Maybe c Maybe c 

a but orders of magnitude faster than straight DFT calculations. b Some steps of database se- 

lection and training can be partially automatized. c Not impossible in principle but we are not 

aware of attempts. 
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he idea was initially conceived in the chemistry community 2 in 

he early 1990s in the effort to improve the accuracy of intermolec- 

lar force fields [29,30] . After two quiet decades, the construction 

f ML potentials exploded into a powerful new research direction 

hat gained popularity in computational materials science, compu- 

ational physics, and computational chemistry. In materials science, 

he emergence and development of the ML potentials can be seen 

s part of the more general quest for data-driven approaches capa- 

le of accelerating the discovery and design of new materials [31–

0] . In simple terms, the basic idea of ML potentials is to forego

he physical insights and try to predict the potential energy of 

he system by numerical interpolation between known reference 

ata (energy, forces and often stresses) generated by quantum- 

echanical calculations. This approach signifies a radical departure 

rom the traditional potentials aiming to achieve the same goal by 

apturing the basic physics of interatomic bonding in the material 

n question. 

The goal of this article is to review the current status and of- 

er the author’s view of the future of the interatomic potential 

eld. Attention will be focused on potentials intended for mate- 

ials science applications, such as the modeling of microstructure, 

efects, mechanical and thermal properties, and alloy thermody- 

amics and kinetics. This excludes the numerous chemical applica- 

ions, molecular matter, and molecule-surface interaction systems. 

he reader interested in ML force fields for molecular systems is 

eferred to the recent literature [22,41–44] . In terms of the ML 

ethods, we mostly discuss the high-dimensional regression mod- 

ls, which are utilized for the potential training and fall in the cat- 

gory of supervised ML. Classification problems, pattern recogni- 

ion, clustering, and many other unsupervised learning approaches 

31,33–36,38] are also actively used in materials research but lie 

utside the scope of the article. 

The leading theme of the article is the comparison of the tradi- 

ional and ML potentials. We discuss their strong and weak points, 

ome of which are complementary to each other. A summary of 

his comparison is presented in Table 1 , with a more detailed 

nalysis to follow. After a brief overview of the traditional poten- 

ials in Section 2 , we review the general idea of the ML potentials

 Section 3.1 ) followed by a more detailed discussion of the techni- 

al aspects, such as the types of regression, the structural descrip- 

ors, the reference database construction, and the training pro- 

ess. A summary of the ML potentials is presented in Section 3.7 . 

ection 4 introduces the general idea of the physically-informed 

L potentials combining the high training accuracy with physics- 
2 See, however, Skinner and Broughton [28] for an early materials science appli- 

ation of neural networks to construct interatomic potentials. 

t

s

2 
ased transferability. The approach is illustrated by the specific ex- 

mple of physically-informed neural network potentials. Finally, in 

ection 5 we summarize this review and present our view of the 

istory and vision of the future of this field. 

. The traditional interatomic potentials 

.1. What are the potentials, and why do we need them? 

The most accurate energy and force calculations are performed 

y electronic structure methods based on the direct quantum- 

echanical treatment of the electrons. Since the density functional 

heory (DFT) [45,46] is employed in most of such calculations, we 

ill refer to them for brevity as “DFT calculations”. In addition to 

he high accuracy (typically, a few meV/atom) and deep physical 

nderpinnings, the DFT calculations can be applied to both ele- 

ental and multicomponent systems with nearly equal computa- 

ional effort. This makes DFT calculations a highly effective tool for 

 broad exploration of materials chemistry [47–49] . DFT calcula- 

ions also provide access to a broad spectrum of physical proper- 

ies, ranging from mechanical to electronic, magnetic and optical. 

 major limitation of the DFT calculations is that they are compu- 

ationally demanding and scale with the number of atoms N as N 

3 

r slower. At present, static DFT calculations can only be performed 

or systems containing a few hundred atoms. Ab initio molecular 

ynamics (AIMD) can be run for about a hundred picoseconds. 

Meanwhile, the intrinsic length and time scales of many ma- 

erials processes greatly exceed the scales currently accessible by 

FT calculations. Examples include plastic deformation, fracture, 

hase nucleation and growth (including, for example, alloy melt- 

ng and solidification), and the microstructure evolution by solid- 

olid interface migration. The modeling of such processes requires 

ccess to large collections of atoms and statistical averaging over 

ultiple thermally activated events. Classical interatomic poten- 

ials offer a solution by enabling drastically accelerated MD and 

C simulations at the price of significantly reduced accuracy. In 

ddition to the accuracy compromise, the classical-mechanical na- 

ure of the potential-based simulations excludes any treatment of 

lectric, magnetic or optical properties. 

Interatomic potentials parameterize the system’s configuration 

pace and express its potential energy E as a function of the 

tomic positions ( Fig. 1 ). This function can be represented by a 

 N-dimensional hypersurface 3 called the potential energy surface 
3 For simplicity, we consider an elemental system. For multicomponent systems, 

he configuration space additionally includes permutations of different chemical 

pecies. 
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Fig. 1. Flowchart of total energy calculations with traditional interatomic potentials. 

The energy E i of an atom i is computed using atomic coordinates within the cutoff

sphere (green) and fixed values of the potential parameters. The atomic energies of 

all atoms of the system are summed up (symbol �) to obtain the total energy. 
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PES). Knowing the PES, the forces F i = −∂ E/∂ r i acting on indi-

idual atoms i can be computed for any atomic configuration ( r i 
eing the position vector of atom i ). Almost all potentials parti- 

ion the total energy into energies E i assigned to individual atoms: 

 = 

∑ 

i E i . Each atomic energy E i is expressed as a function of the

tomic positions R i ≡ (r i 1 , r i 2 , ..., r in i ) in the vicinity of the atom.

he functional form of the potential, 

 i = �(R i , p i ) , (1) 

nsures the invariance of the energy under rotations and trans- 

ations of the coordinate axes and permutations of the atoms. In 

q. (1) , p i is a set of parameters discussed below. The partition- 

ng into atomic energies accelerates the total energy calculation by 

aking it a linear N procedure and enabling parallelization by do- 

ain decomposition. We emphasize, however, that this partition- 

ng is only valid for systems with short-range interactions. Long- 

ange Coulomb and dispersive interactions must be added as sep- 

rate terms and computed by the Ewald summation or similar nu- 

erical methods. 

.2. The physical basis of traditional potentials 

The distinguishing feature of the traditional potentials is that 

he potential function �(R i , p i ) is based on a physical under- 

tanding of interatomic bonding in the material ( Table 1 ). For 

xample, the embedded-atom method (EAM) [4,5,50] , the modi- 

ed EAM (MEAM) [51] , and the angular-dependent potential (ADP) 

52] are specifically designed for metallic systems. The Tersoff

6–8] and Stillinger-Weber [9] potentials were specifically devel- 

ped for strongly covalent materials such as silicon and carbon. 

he charge-optimized many-body (COMB) potentials [53] , reactive 

ond-order (REBO) potentials [10,54,55] , and reactive force fields 

ReaxFF) [56] are most appropriate for molecular systems with 

hemical reactions. The functional forms of the traditional poten- 

ials are diverse and largely incompatible with each other due 

o the differences in the underlying physical and chemical mod- 

ls specific to the respective classes of materials. This disparity 

f the functional forms poses a formidable challenge to modeling 

ixed-bonding and two-phase systems containing metal-ceramic 

r metal-polymer interfaces. 4 
4 Technically, one can always create ad hoc functional forms of cross-element in- 

eractions that mathematically reduce to the respective single-element functions for 

c

s

r

3 
.3. Training of traditional potentials 

The potential function (1) of the traditional potentials depends 

n a small number m (usually, 10–20) of global (same for all 

toms) fitting parameters p = (p 1 , ..., p m 

) . These parameters are

ptimized by training on a database usually composed of exper- 

mental data and a relatively small number of DFT energies or 

orces. The experimental information comes in the form of spe- 

ific physical properties of the targeted material. Such properties 

ypically include the lattice constant, cohesive energy, elastic con- 

tants, point defect formation and migration energies, surface en- 

rgies, and generalized stacking fault energies. By contrast to the 

L potentials discussed later, the traditional potentials are fitted 

irectly to these properties, not the PES. Once optimized, the po- 

ential parameters are fixed once and for all and are used for pre- 

icting the energy and forces in all atomic configurations encoun- 

ered during the subsequent simulations. Due to the mathematical 

implicity of the potential function, such calculations are compu- 

ationally fast, easily parallelizable, and provide access to systems 

ontaining millions of atoms. 

The loss function minimized during the potential training is 

sually the mean squared deviation of properties from their refer- 

nce values. These deviations are included with weights assigned 

o individual properties and playing the role of hyper-parameters. 

ince the reference database is small, a single training run is 

omputationally fast. However, the potential obtained has to be 

ested for many physical properties not represented in the train- 

ng database. Some of the tests, such as computing the melting 

emperature, require lengthy simulations. The optimization process 

as a feedback loop in which the hyper-parameters are adjusted 

y the developer to improve the testing results. This loop is the 

ost critical step of the potentials construction that heavily relies 

n human decisions and can hardly be automatized. Relationships 

etween the weights of the fitted properties and the accuracy of 

he tested properties are not apparent. Decisions have to be made 

ased on the developer’s prior experience, intuition, and knowl- 

dge of many intricacies of atomistic simulations. The enormous 

omplexity of the property-based optimization and the reliance on 

xpert knowledge make the development of high-quality potentials 

 long and painful process. 

The accepted practice in constructing multicomponent poten- 

ials is to preserve the underlying elemental potentials and only fit 

he parameters of the cross-interaction functions. With this strat- 

gy, one elemental potential can be crossed with many others. This 

roperty of multicomponent potentials, which we call the “inher- 

tance” of the elemental potentials, helps avoid duplication of po- 

entials and greatly facilitates their standardization and organiza- 

ion in repositories. Nevertheless, the chemical exploration using 

otentials is much more complicated than with DFT calculations. 

ach time an element must be added to the system, a new set of 

ross-interaction functions must be fitted, which requires signifi- 

ant efforts. 

.4. Accuracy and transferability of traditional potentials 

Although the construction of traditional potentials is based on 

hysical insights, the underlying physical models are highly ap- 

roximate and contain few adjustable parameters. As a result, their 

ccuracy is rather limited ( Table 1 ). While some properties are 

eproduced with decent accuracy, there are many subtle effects 

such as specific surface reconstructions or complex dislocation 

ore structures) that are not predicted correctly [60] . Traditional 
ertain combinations of parameters, as recently proposed for metal-semiconductor 

ystems [57–59] . Such functions are not motivated by physical insights, and their 

eliability is likely to be limited. 
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Fig. 2. Schematic illustration of accuracy and transferability of (a) traditional 

(b) mathematical ML and (c) physically-informed ML interatomic potentials. The 

energy-volume ( E − V ) relation for a particular structure obtained by DFT calcu- 

lations (points) is compared with predictions of the potentials. The points inside 

and outside the training domain are shown by filled and open circles, respectively. 
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otentials are especially struggling with complex elements such as 

i capable of exhibiting both covalent and metallic types of bond- 

ng. Carbon is another difficult case due to its bonding complexity 

nd the existence of multiple metastable 3D, 2D, and 1D struc- 

ures. There are many examples of wrong predictions by tradi- 

ional potentials and their failures to describe particular properties 

n particular systems. Nevertheless, many predictions were sub- 

equently confirmed by experiment or DFT calculations. Much of 

he current knowledge of dislocations, grain boundaries, and other 

nterfaces emerged from potential-based MD and MC simulations 

erformed over the past decades. 

Despite the limited accuracy, the traditional potentials often 

emonstrate reasonably good transferability to atomic configura- 

ions lying well outside the training dataset. 5 This important prop- 

rty of traditional potentials is due to the incorporation of basic 

hysics in their functional form ( Table 1 ). As long as the nature

f the chemical bonding in the material remains the same as was 

ssumed during the potential construction, the potential should 

ake at least physically meaningful energy predictions for new 

onfigurations not represented during the training ( Fig. 2 a). 
5 Transferability of potentials is often interpreted as their ability to make accu- 

ate predictions for structures not included in the reference dataset. Here, we un- 

erstand this term as the potential’s ability to make meaningful predictions outside 

he domain of reference structures, i.e., in the extrapolation regime. There are sev- 

ral different criteria for distinguishing extrapolation from interpolation (based on 

ither statistical uncertainties or definitions of distances and convexity in the fea- 

ure space). However, in many cases the distinction is quite obvious. For example, 

esting a potential for densities lying well outside the density range represented in 

he reference dataset can be considered extrapolation. 

3

3

e

s

d

m

(

4 
.5. Classification of interatomic potentials 

In terms of intended applications, all potentials, regardless 

f their functional form, can be classified into three categories: 

eneral-purpose type, special-purpose type, and artificial. 

The general-purpose potentials are trained to reproduce a broad 

pectrum of physical properties considered most important for 

he subsequent atomistic simulations. Although the training pro- 

ess targets a particular set of properties, the underlying refer- 

nce structures must be diverse enough to represent the most typ- 

cal atomic environments occurring in typical simulations. Once 

eleased to the community, a general-purpose potential is used 

or almost any type of simulation that the user may choose to 

erform. Most of the atomistic simulations conducted today uti- 

ize such off-the-shelf potentials. In addition to the computational 

peed, the reason for their popularity is their reasonable transfer- 

bility mentioned above. Even when taken well outside the train- 

ng domain, the potential may lose much of its accuracy but does 

ot usually generate physically nonsensical results. 

Special-purpose potentials are designed for one particular type of 

imulation. They target a specific application and are not expected 

o be transferable to other types of simulation. For example, a po- 

ential can be specifically trained to reproduce the lattice dynamics 

nd phonon thermal conductivity of a particular element or com- 

ound. 

The third class is comprised of the so-called artificial (synthetic) 

otentials . Taking advantage of the property-based training, one can 

onstruct a series of artificial potentials with a varying value of 

 particular physical property (or properties) while keeping other 

roperties unaltered. Simulations with such potentials and compar- 

son with experiments or theory may help the user better under- 

tand the impacts of the different physical parameters on a partic- 

lar process. For example, one can generate a set of face-centered- 

ubic (FCC) potentials with a varying stacking fault or twin bound- 

ry energy with all other properties fixed. Simulation of plastic de- 

ormation with these potentials may help disentangle the effects 

f the fault energies on the deformation modes from other possi- 

le effects. As another example, simulations with artificial Al po- 

entials that significantly modified the liquid properties helped the 

uthors [61] to unravel a relationship between the solid-liquid in- 

erface mobility and the liquid diffusion coefficient. Artificial po- 

entials are also part of the simulated alchemy approach [62–64] , 

n which a reversible path between two states is implemented by 

ampering with the potential. For example, the potential can be 

odified by small increments (e.g., by the rule of mixtures) to 

ransform one elemental potential into another. Alternatively, some 

toms can be slowly removed from the system (made invisible) 

y gradually dialing down their interactions with the remaining 

toms. The free energy difference between the two states of the 

ystem can be then computed by the λ-integration method [62,65–

7] . 

We emphasize that the above classification is based on the in- 

ended usage of the potential and is common to both traditional 

nd ML potentials. The same functional form can be used used to 

enerate a potential for any of the three categories. 

. Machine-learning potentials 

.1. The basic idea 

While the traditional potentials target a particular set of prop- 

rties, the ML potentials map the 3 N-dimensional configurational 

pace of the system onto its PES. The latter is represented by a 

iscrete set of DFT energies included in the training dataset. The 

apping is implemented by a numerical interpolation algorithm 

regression) containing a large number of adjustable parameters. 
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Fig. 3. Flowchart of total energy calculations with ML interatomic potentials. The 

local environment of an atom i within the cutoff sphere (green) is encoded in a set 

of local structural parameters, which are then mapped onto the energy E i assigned 

to atom i using a regression model. The summation of the energies of other atoms 

of the system (symbol �) gives the total energy and thus a point on the PES of the 

system. 
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he goal of the training is to optimize the regression parameters 

o obtain a smooth PES that best interpolates between the refer- 

nce energies. The energy gradients at the reference points, ob- 

ained from the DFT atomic forces, can also be included in the op- 

imization process. Given the large size of the reference database 

nd the high dimensionality of the parameter space, the optimiza- 

ion problem is complex and greatly benefits from the application 

f ML methods. 

Like the traditional potentials, most of the ML potentials are 

redicated on the locality of atomic interactions and thus parti- 

ion the total energy E = 

∑ 

i E i into atomic energies E i . Consid- 

ring an elemental material to simplify the discussion, the lo- 

al environment of an atom i is defined by the set of positions 

 i ≡ (r i 1 , r i 2 , ..., r in ) of its n neighbors within a cutoff sphere of a

adius r c (for a multicomponent system, the chemical identities 

f the atoms are also considered). The local position vector R i is 

apped onto the local energy by the potential function (1) . The 

otal PES is reconstructed by the summation of such local maps. 

s with the traditional potentials, the locality approximation ac- 

elerates the total energy calculation and enables its effective par- 

llelization by the spatial domain decomposition of the system. 

he locality also justifies using DFT calculations for small super- 

ells to make the energy predictions for large systems. (Effort s to 

nclude long-range interactions due, for example, to electrostatic 

orces have also been published [68–70] .) 

The local mapping is implemented in two steps. First, instead 

f the position vector R i , the local atomic environment is repre- 

ented by another vector composed of local structural parameters 

 i = (G i 1 , G i 2 , ..., G iK ) . These parameters are smooth functions of R i 

nvariant under translations and rotations of the coordinate axes 

nd permutations (relabeling) of the atoms. At the second step, 

he vector G i is mapped onto the energy E i by a chosen regression 

odel R . Thus, the atomic energy calculation can be represented 

y the formula 

 i → G i 
R → E i (2) 

hown diagrammatically in Fig. 3 . 
5 
The role of the structural descriptors G i is twofold. First, they 

nsure the mentioned invariance and smoothness of the PES. The 

econd role of the G i ’s is to replace the variable-size position vec- 

or R i (whose length n can vary from one atom to another ac- 

ording to the number of neighbors) by a feature vector of a fixed 

ength K. The introduction of a fixed number of local structural de- 

criptors was a crucial step proposed by Behler and Parrinello [71] . 

lthough they initially focused on a single-component system, the 

eneral idea of fixing the size of the descriptors was later extended 

o multicomponent systems [68,69,72–82] . With K fixed, the total 

nergy calculation can be accomplished with a single pre-trained 

egression R mapping the K-dimensional feature space onto the 

D space of atomic energies. (This explains why the regression 

ymbol R in Eq. (2) does not carry the index i .) The possible re-

ression models R implementing this mapping will be discussed 

ater. 

The preceding discussion points to three distinguishing fea- 

ures of ML potentials compared with the traditional potentials 

 Table 1 ): 

• The reference database is generated by DFT calculations with- 

out any experimental input. 

• The energy is predicted by purely numerical interpolation of 

the reference dataset without any physics-based model. The 

only physical input is the assumption of the locality of the 

atomic interactions and the invariance of energy under trans- 

lations, rotations, and permutations of atoms. 

• The potential is trained to approximate the PES of the system 

and not y a particular physical property or properties. 

In principle, the PES uniquely defines all properties of the sys- 

em. Its local minima represent stable or metastable structures; the 

addle points correspond to energy barriers of thermally activated 

inetic processes, such as vacancy jumps or Peierls barriers of dis- 

ocations, while the PES curvature controls the elastic constants 

nd phonon dispersion relations. In reality, however, the inevitable 

eviations of the approximate PES from the theoretical one ob- 

ained by DFT calculations cause errors in the predicted physical 

roperties. We will return to the PES versus properties issue later. 

n the following sections, we briefly review some of the specific 

teps of the ML potential development. 

.2. The local structural descriptors 

The local structural parameters G i = (G i 1 , G i 2 , ..., G iK ) encode the

ocal environment of every atom i in a fixed number of invariant 

arameters, often referred to as local fingerprints. As already men- 

ioned, the underlying assumption is that the atomic interactions 

re short-range, and thus the energy assigned to atom i only de- 

ends on its local environment. The total energy is predicted based 

n the information about all local environments in the system. 

The vector G i is a function of the neighbor positions R i (and 

heir chemical identities in multicomponent systems). The choice 

f this function is extremely important and can strongly impact the 

ccuracy of the potential. The general requirement for this func- 

ion is to capture the local atomic environment most efficiently. 

he efficiency includes the resolution (different environments must 

e represented by sufficiently different descriptors), the descriptor 

ize K, and the computational cost of its calculation. A more de- 

ailed list of expected properties of descriptors can be found in 

83] . It is also desirable that the set of descriptors be complete, 

.e., capable of exactly reconstructing the local environment (up to 

ymmetry operations) at least in principle. In the absence of com- 

leteness, the descriptors can miss certain structural features. On 

he other hand, an overcomplete set can generate different descrip- 

ors for the same structure, resulting in discontinuous behavior of 
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Fig. 4. Example of a feed-forward NN containing two hidden layers. G is the in- 

put vector, q is the output vector. The signals transmitted between the NN nodes 

(neurons) are transformed by the weight matrices w 

(1) , w 

(2) and w 

(3) and the bias 

vectors b (1) , b (2) and b (3) . 
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nergy predictions. Several representations based on complete ba- 

is sets have been proposed [84,85] . In practice, only two- and and 

hree-body terms are usually utilized. The issues surrounding the 

ncompleteness of such “truncated” representations have been re- 

ently investigated [86] . 

More detailed theoretical analysis and benchmarking of differ- 

nt descriptors can be found in the literature [25,83–90] . In prac- 

ice, different authors use their favorite G i ’s, which often perform 

qually well. Some of the commonly used descriptors include: 

Gaussian descriptors. Combinations of two-body and three-body 

aussian functions of interatomic distances and bond angles are 

ultiplied by a smooth cutoff function. A particular case, called the 

ymmetry functions, was proposed by Behler and Parrinello [71] , 

ut other functional forms can be equally efficient [23,88,91–93] . 

t was proposed [91–93] to express the bond-angle dependence 

hrough Legendre polynomials since they form an orthogonal and 

omplete set. 

Zernike descriptors. The atomic environment is represented by 

oefficients (moments) on the basis of Zernike functions [94,95] , 

hich have the advantage of forming an orthogonal basis set 

nd automatically including many-body interactions. Khorshidi 

t al. [95] demonstrate that the Zernike descriptors are computa- 

ionally faster than the bispectrum method (see below) and that 

heir derivatives (needed for the force calculations) can be com- 

uted more easily. 

Moment tensor descriptors [96] . Moment tensors of different 

anks are formed by multiplying radial functions by outer prod- 

cts of the position vectors of the neighboring atoms. Rotationally 

nd permutationally invariant descriptors are obtained from con- 

ractions of these tensors to produce scalars. These descriptors are 

sed as part of the moment tensor potentials (MTP) [96–100] . The 

TP descriptors form a complete basis set of polynomials if all or- 

ers are included. In the recent tests of several ML potentials [25] , 

he MTP potentials have shown the optimal combination of accu- 

acy and computational efficiency. 

Smooth overlap of atomic positions (SOAP) [87,101] . The neighbor- 

ng atoms are represented by overlapping Gaussian peaks of den- 

ity, which are expanded in spherical harmonics. The bispectrum 

escriptors are formed from the expansion coefficients and are ro- 

ationally invariant. The SOAP descriptors have proved to be very 

owerful but computationally slower than the alternatives men- 

ioned above and below. Although designed in tandem with the 

aussian approximation potentials (GAP), they can also be com- 

ined with neural networks [95] and other regression models. 

Spectral neighbor analysis potential (SNAP) descriptors [102] . The 

ngerprinting of the environment is somewhat similar to that in 

he SOAP method. The density peaks corresponding to the neigh- 

oring atoms are expanded on the basis of 4D hyper-spherical har- 

onics. The bispectrum formed by the expansion coefficients pro- 

ides the local structural descriptors. A multicomponent extension 

f the method has been recently developed [103] . 

Atomic cluster expansion (ACE) [84] can be viewed as a general- 

zation of some of the above descriptors. The atomic environment 

s represented by a set of invariant polynomials of functions form- 

ng a complete basis. Each basis function is a product of a radial 

unction and an angular component represented by a spherical har- 

onic. Linear scaling with the number of neighbors is achieved by 

ransforming the sums products into products of sums (which is 

lso done with the MTP descriptors) 6 . The expansion can be ap- 

lied to multicomponent environments. For atomic clusters, ACE 

rovides a good linear model for energy predictions. For bulk sys- 

ems, a nonlinear model has been proposed by combining the ACE 
6 See [104] for a general analysis of rotational invariants based on spherical har- 

onics. 

a

s  

b  

b

6 
escriptors with a traditional interatomic potential in the Finnis- 

inclair [50] or any other format. The method has been recently 

xtended to vectorial and tensorial physical properties [105] . 

Assessing the efficiency of descriptors is challenging since their 

erformance depends on the regression model and the database 

sed for the testing. The benchmarking of different potentials 

25] does not shed much light on the descriptors’ performance 

ince they are only responsible for one step in the energy calcu- 

ation. Onat et al. [83] have recently published a detailed compar- 

son of the sensitivity of eight most popular descriptors to struc- 

ural perturbations using four different reference datasets. 

.3. The regression models 

Several high-dimensional regression models are available for 

apping the local environments of atoms onto the PES. The most 

ommon choices are the Gaussian process regression [87,101,106–

10] (underlying the GAP potentials), the kernel ridge regression 

31,111,112] , the SNAP model [78,102,113] , the MTP potentials [96] , 

nd the artificial neural network (NN) regression [22,42,71,72,114–

22] . Some of the models (such as SNAP and MTP) are linear, while 

thers are highly nonlinear. They contain a large ( ∼ 10 3 ) number of 

arameters, which are trained on a DFT database. 

We will concentrate the discussion on the NN regression as an 

xample. NNs have the advantage of being very flexible, not af- 

ected by any constraints specific to the material system, and being 

niversal approximators [123] . NNs are widely used in materials 

cience and many other areas of science and technology. Thus, the 

xisting experience, methodologies, and even some software pack- 

ges can be transferred to the potential development field. 

Most of the NN potentials utilize a simple feed-forward archi- 

ecture, where the nodes (neurons) are organized in layers. The 

eature vector is fed into the input layer, the output layer deliv- 

rs the energy or force, and the hidden layers inserted in between 

rovide additional adjustable parameters and enhance the flexi- 

ility of the model ( Fig. 4 ). The output layer consists of just one

ode for PES fitting, but three more nodes with Cartesian compo- 

ents of the force can be added if force matching is part of the 

raining. Generally, we can consider a feed-forward NN with an ar- 

hitecture K − k − l... − m composed of M layers labeled by an in- 

ex n = 1 , 2 , ..., M. The input layer ( n = 1 ) contains K nodes, which

eceive the input parameters G η , η = 1 , 2 , .., K. These are multi-

lied by weights w 

(1) 
ην ( ν = 1 , 2 , ..., k ), shifted by biases b (1) 

ν , and

ent as input to the first hidden layer ( n = 2 ). This layer applies

 transfer (activation) function f (2) (x ) at each node, producing a 

et of outputs t (2) 
ν = f (2) ( 

∑ κ= m 

κ=1 G κw 

(1) 
κν + b (1) 

ν ) . They are multiplied

y another set of weights w 

(2) 
νμ ( μ = 1 , 2 , ..., l), shifted by biases

 

(2) 
μ , and the parameters 

∑ κ= l 
κ=1 t 

(2) 
κ w 

(2) 
κμ + b (2) 

μ are fed into the next 
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7 Traditional potentials are often used as an easy target to demonstrate the su- 

perior accuracy of ML potentials. The comparison is unfair as the two classes of 

potentials contain drastically different numbers of fitting parameters ( O(10) and 

O(10 3 ) , respectively) and are based on different philosophies. One can easily com- 

pile a set of examples of spectacular failures of ML potentials outside the training 

domain where a traditional potential makes physically meaningful (albeit not per- 

fectly accurate) predictions. 
ayer with n = 3 , which applies to them its own transfer function 

f (3) (x ) , and the process continues. The last layer ( n = M) does not

hange its input parameters t (M) 
λ

( λ = 1 , ..., m ) and delivers them

s the final NN output. The data flow through the NN can be de- 

cribed by the iteration scheme 

 

(n ) 
η = f (n ) 

(∑ 

κ

t (n −1) 
κ w 

(n −1) 
κη + b (n −1) 

η

)
, n = 2 , 3 , ..., M, (3) 

ith the initial condition t (1) 
η = G η and the final transfer function 

f (M) (x ) ≡ x . 

Thus, a feed-forward network implements a nested analytical 

unction with the weights w 

(n ) 
κη and biases b (n ) 

η as fitting parame- 

ers. Typical transfer functions are the sigmoidal function f (x ) = 

 

1 + e −x ) −1 and the hyperbolic tangent f (x ) = tanh (x ) , but other 

unctions with similar shapes can also be used. The reader is re- 

erred to Behler’s paper [119] for an excellent exposition of the NN 

ethod, including the exact count of the total number of parame- 

ers and comparison of different transfer functions. 

Although the NN architecture itself has no physical meaning, it 

rovides hyper-parameters that can be optimized during the train- 

ng by adding or removing nodes or whole layers. This is usu- 

lly accomplished by trial and error, but evolutionary algorithms 

nd other architecture search methods have also been proposed. In 

ddition to the feed-forward architectures, convolutional networks 

nd radial basis function NNs have been explored, although mostly 

or organic molecules [42] . 

We emphasize again that in all cases, the regression model is 

ittle more than a black box with many fitting parameters without 

ny physical significance. 

.4. The training and validation of ML potentials 

The regression R in Eq. (2) depends on a large set of ad- 

ustable parameters, which are optimized to best reproduce the 

nput-output pairs from the DFT dataset. The reference DFT data 

omes in the form of energies 
{

E s 
DFT 

}
and (often) atomic forces 

F s 
DFT 

}
and/or stress tensors 

{
T 

s 
DFT 

}
for a set of supercells. One 

pecific feature of ML potentials, compared with ML regression 

roblems in other fields, is the absence of one-to-one correspon- 

ence between the input feature vectors and the reference energies 

respectively, forces or stresses). The potential predicts individual 

tomic energies, which must be summed over the supercell atoms 

efore comparing the supercell energy E s with the reference value 

 

s 
DFT 

. It should also be noted that some of the force and stress ten-

or components can be zero by symmetry and thus useless for the 

raining process. 

The simplest form of the loss function minimized during the 

otential training is 

 = 

1 

N 

N ∑ 

s =1 

(
E s − E s 

DFT 

N s 

)
2 + τ1 

1 

N 

N ∑ 

s =1 

3 ∑ 

α=1 

[ F s α − ( F s α) DFT ] 
2 

+ τ2 
1 

N 

N ∑ 

s =1 

3 ∑ 

α,β=1 

[
T s αβ −

(
T s αβ

)
DFT 

]
2 + τ3 

1 

L 

L ∑ 

κ=1 

| p κ | 2 . (4) 

ere, N s is the number of atoms in supercell s , N is the total num-

er of supercells in the database, L is the number of fitting param- 

ters, and τ1 , τ2 and τ3 are adjustable coefficients treated as hyper- 

arameters. The first three terms in the right-hand side represent 

he mean-square error of fitting. Some authors write the first term 

s the mean-square error of the supercell energy, not the per-atom 

nergy as in Eq. (4) . The last term in Eq. (4) is added for regular-

zation purposes to ensure that the parameters remain sufficiently 

mall for smooth interpolation. Some ML potentials do not require 

xplicit optimization: the parameters are obtained by matrix inver- 
7 
ion or similar algebraic operations. In all cases, however, this step 

ust be repeated multiple times to optimize the hyper-parameters. 

Once the final values of the potential parameters are estab- 

ished, they are fixed and become part of the definition of the ML 

otential, just like with with the traditional potentials. It is ex- 

ected that the potential will make accurate energy and force pre- 

ictions for new configurations by interpolating between the DFT 

oints. 

Several optimization algorithms are used, the most common 

f them being the backpropagation (steepest descent method), 

he Levenberg-Marquardt, the Davidon-Fletcher-Powell (DFP), and 

he Broyden–Fletcher–Goldfarb–Shanno (BFGS) unconstrained op- 

imization algorithms [124,125] . The loss function has a rugged 

errain with numerous dimples and wrinkles; hence the gradient 

ethods are easily trapped in local minima. Numerous restarts 

rom different initial guesses are usually required to reach a deeper 

inimum. Some developers start the training with a global search 

sing, for example, an evolutionary algorithm to avoid the traps, 

ollowed by a gradient-based minimization. Because of the large 

ize of the reference database, the training is often performed in 

 batch mode: the model is optimized on relatively small subsets, 

elected from the full database at random or by a chosen rotation 

ule until each configuration is exposed multiple times. The preci- 

ion of training is measured by either the root-mean-square error 

RMSE) or mean absolute error (MAE). 

Many strategies have been developed to avoid underfitting or 

verfitting of the database. The overfitting is especially dangerous 

s it produces oscillations between the reference points that de- 

rade the predictive capability of the potential. The common prac- 

ice is to monitor the error of predictions on a small validation 

et excluded from the training dataset. The divergence between the 

raining and validation errors signals the onset of overfitting. The 

 -fold cross-validation and other validation methods are also ap- 

lied to test the potentials for overfitting. 

Given that the regression models depend on thousands of ad- 

ustable parameters and offer enormous flexibility in fitting the 

eference database, it is hardly surprising that most ML potentials 

eadily achieve the training accuracy of several meV/atom. We em- 

hasize, however, that this high accuracy is achieved by purely 

umerical interpolation. Predicting the energies of new atomic 

onfigurations significantly different from those included in the 

raining database requires extrapolation. Being a purely numerical 

rocedure, the extrapolation can produce unpredictable and often 

eaningless results ( Fig. 2 b). 7 

.5. The reference database 

The reference database typically contains ∼ 10 3 to 10 4 super- 

ells with energies, forces, and (often) stresses obtained by rou- 

ine quantum-mechanical (usually, high-throughput DFT) calcula- 

ions. Either static structures or snapshots of AIMD trajectories (or 

oth) can be included. Alternatively, the structures can be gener- 

ted by MD simulations with a current version of the potential, 

ollowed by the energy (force and/or stress) calculations by DFT. 

hile there are several schools of thought about the most effec- 

ive procedure for assembling the database, the consensus is that it 

hould be as diverse as possible and adequately represent the con- 

gurations most relevant to the intended applications. Preference 
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s usually given to low-energy configurations, but non-equilibrium 

tructures are also included to represent transition states and cover 

 broader domain in the configuration space. 

There are diverging opinions about the role of human expertise 

n the ML potential development (as in many other fields of sci- 

nce and technology). One approach is to judiciously select a set 

f reference structures deemed to be most relevant to the targeted 

pplications. For example, since metals are usually studied for me- 

hanical behavior, structures representing defects are given prefer- 

nce, especially dislocations, twin boundaries, stacking faults, and 

rain boundaries. Several alternate crystal structures, deformation 

aths between them, and the liquid phase are also included to ex- 

and the configuration domain. On the other hand, properties such 

s the Grueneisen parameter or the phononic thermal conductivity 

re considered less important and are rarely even checked. For a 

ovalent material, such as silicon, the potential can be expected 

o reproduce the thermal conductivity, along with various alter- 

ate structures (especially liquid and amorphous) and defects (es- 

ecially surfaces and the crack tip). For potentials intended for a 

ore specific application, the database will be even more special- 

zed. Assembling such handcrafted datasets requires a fair amount 

f decision-making based on the developer’s expert knowledge and 

hysical intuition. The reliance on human expertise is even more 

ignificant in developing binary and multicomponent potentials in- 

ended for a broad range of metallurgical applications [76,126] . On 

he downside, a hand-picked database may contain many near- 

epeat or uninformative local environments that contribute little 

o the accuracy of the final product. 

With this approach, the development of an ML potential be- 

omes similar to that of traditional potentials. In fact, for ML po- 

entials, the situation is more complicated because the training 

rocess reproduces the PES and not directly the properties. While 

heoretically, the PES uniquely defines the properties, in practice, 

ven a tightly fit PES does not automatically guarantee accurate 

redictions of properties. Experience shows that if a set of poten- 

ials is trained on the same database to the same RMSE error (say, 

-5 meV/atom) starting from different initial conditions, such po- 

entials often predict significantly different values e of the prop- 

rties. Additional efforts are required to select a potential with 

he best combination of properties by testing multiple versions. 

his adds a human-controlled feedback loop to the training pro- 

ess since the notion of a “best combination” is difficult to express 

y an algorithm. One way to improve a particular property is to 

dd more reference structures controlling this property. For some 

roperties, this is straightforward. For example, the inclusion of ad- 

itional supercells containing a vacancy or a particular surface may 

nsure a more accurate vacancy (respectively, surface) formation 

nergy. For other properties, such as the melting temperature, the 

onnection is less direct and more difficult to control. 8 

Alternatively, algorithms have been proposed for generating 

he reference database with little or no human intervention. In 

ost cases, the database construction and the potential train- 

ng become part of one and the same “active learning” process 

81,97,107,110,128–133] . In a typical scenario, a preliminary version 

f the potential is trained on an initial DFT database. An MD simu- 

ation is performed with this potential until configurations are en- 

ountered that are sufficiently different from the known ones, sig- 
8 One can include additional structures representing the liquid and the ground- 

tate crystal structures at the expected melting temperature. In addition to the high 

omputational overhead and poor representation of liquids by small supercells, this 

pproach cannot guarantee that the liquid will not crystallize into a wrong crystal 

tructure lying above the ground state at 0 K but becoming more stable at high 

emperatures. It has been shown, however, that DFT melting point calculations can 

e accelerated by constructing a ML on-the-fly potential using the Bayesian infer- 

nce approach [127] . 

r

[

s

M

a

p

p

8 
aling that the simulation ran into a poorly represented region of 

he configuration space. Different novelty criteria have been pro- 

osed to detect the point where the simulation drifts outside the 

eference domain. The “unknown” configurations are then added to 

he database, and their DFT energies (forces/stresses) are computed 

ither offline or on-the-fly. The training is continued on the ex- 

anded database, and the updated potential is used to continue the 

D simulation. The iterations are repeated until self-consistency is 

eached, i.e., when no new configurations are discovered within a 

easonable MD time. The MD simulation can be replaced by ran- 

om structure searches, in which multiple randomized structures 

re quenched to find local energy minima. Various other algo- 

ithms have been devised for configuration space exploration and 

raining-testing strategies. 

Arguably, the advantage of the active learning approaches is 

he ability to automatically generate the most economical refer- 

nce database for achieving the desired training accuracy and self- 

onsistent behavior of the final potential. On the other hand, the 

onfiguration domain covered by the potential depends on the 

hosen MD simulation protocol (ensemble, temperatures, densi- 

ies) or, respectively, on the chosen algorithm for the generation 

nd testing of the new structures. The performance of the poten- 

ial outside this domain remains uncontrollable. Furthermore, the 

revious comments about the PES approximation versus the prop- 

rty predictions are relevant to the present case as well. Automat- 

cally achieving a desired accuracy of training does not automati- 

ally guarantee that the physical property predictions will be ac- 

urate enough for practical applications of the potential. Automa- 

ion is possible and makes sense for surrogate models and some 

pecial-purpose potentials. However, a fully automated generation 

f a general-purpose potential does not seem to be a reasonable 

xpectation. 

.6. ML potential software 

Several software packages have been developed for the ML po- 

ential generation and simulations. Some are stand-alone packages, 

thers are interfaced with the Large-scale Atomic/Molecular Mas- 

ively Parallel Simulator (LAMMPS) [134] , the Vienna Ab Initio Sim- 

lation Package (VASP) [135,136] , or other popular software. In this 

ighly dynamic field, several new packages are released every year. 

 few examples are given below in no particular order and without 

ny claim of completeness. 

ASE (Atomistic Simulation Environment) [137,138] offers a set of 

ython tools for setting up, manipulating, running, visualizing, and 

nalyzing atomistic simulations. The environment is linked to sim- 

lation software such as LAMMPS, and to DFT packages such as 

ASP and Quantum Espresso [139] . It provides an excellent plat- 

orm for DFT database generation and ML potential testing. 

Amp (Atomistic Machine-learning Package) [95,140] is some- 

hat similar to ASE and additionally contains modules for ML po- 

ential training using an assortment of descriptors and optimiza- 

ion algorithms. The focus is on NN potentials, but other user- 

efined regression models are also accepted. As an example, Amp 

as applied to develop a quaternary potential for H and CO on a 

o surface [95] . 

N2P2 (Neural Network Potential Package) [141] provides a 

epository and tools for the training of Behler-Parrinello type 

71] NN potentials and calculation of energies and forces using 

uch potentials. It also contains components needed for running 

D simulations with LAMMPS. 

Aenet (Atomic Energy Network) [44,73,74,142] . Software pack- 

ge for the training and usage of Behler-Parrinello type [71] NN 

otentials. Modules for the energy and force calculations with the 

otentials are also included. 
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Fig. 5. Flowchart of the total energy calculation with a physically-informed ML in- 

teratomic potential. The local environment of an atom i within the cutoff sphere 

(green) is encoded in a set of local structural parameters, which are then mapped 

onto a set of parameters of a physics-based interatomic potential. These parame- 

ters and the local atomic coordinates are used to compute the energy E i assigned 

to atom i . The summation of the energies of other atoms of the system (symbol �) 

gives the total energy and thus a point on the PES of the system. 
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MLIP (Machine Learning Interatomic Potentials) [100,143] pack- 

ge constructs MTP potentials [80,96,97,100] (including multicom- 

onent potentials [80] ) by the active learning approach. 

KLIFF (KIM-based Learning-Integrated Fitting Framework) is a 

ackage intended for the development of both traditional and 

N interatomic potentials. The package is linked to the OpenKIM 

roject [16] , and through it, to a large interatomic potential repos- 

tory and LAMMPS simulations. 

MAISE (Module for ab initio structure evolution) [144] is a 

ackage for automated generation of NN (Behler-Parrinello type 

71] ) potentials for global structure optimization. The DFT database 

s generated automatically by an evolutionary structure sampling 

rocedure. 

.7. Discussion of ML potentials 

The distinguishing features of the ML potentials compared with 

he traditional potentials are summarized in Table 1 . When prop- 

rly trained, an ML potential can predict the energy and forces 

ith nearly DFT accuracy, provided the atomic configuration bears 

nough similarity with some of the known configurations from the 

raining database. The high accuracy is achieved by numerical in- 

erpolation using a high-dimensional regression model trained on 

 massive DFT database. The regression maps the local atomic en- 

ironments, encoded in local structural parameters (fingerprints), 

nto the PES of the material. By contrast to the traditional poten- 

ials, which aim to reproduce a particular set of physical proper- 

ies, ML potentials approximate the PES (actually, only some part 

f it), with the expectation that accurate values of physical proper- 

ies will follow. Another crucial difference is that the ML potentials 

re not based on any physical considerations. The fingerprints and 

he regression only respect the locality of atomic interactions and 

he invariance of energy under translations, rotations, and relabel- 

ng of atoms but are otherwise devoid of any physical significance. 

ccordingly, the ML potential are sometimes called “mathematical”

r “non-physical” [22] . 

Freedom from physics is a double-edged sword. ML potentials 

re not specific to any particular class of materials. A potential 

or almost any material can be developed with the same model, 

ame software, and a comparable amount of computational effort 

egardless of the type of chemical bonding. On the other hand, ML 

otentials are powerful numerical interpolators but poor extrapola- 

ors. The energy/force predictions for less familiar atomic environ- 

ents are based on a purely mathematical extrapolation procedure 

hose results are unpredictable and often physically meaningless. 

pecial effort s are required to keep the simulations within or close 

o the configuration domain on which the potential was trained. 

Given the limited transferability, there are two approaches to 

tilizing the ML potentials. One is to develop a special-purpose 

otential for a particular task without claiming any broader ap- 

licability. The approach exploits the ML potentials’ high accuracy 

nd computational efficiency (compared to DFT) while keeping the 

imulation in the interpolation regime. One recent example is de- 

eloping a GAP Si potential specifically designed for phonon prop- 

rties and thermal conductivity calculations, including the effect of 

acancies [145] . Similarly, a deep NN potential was constructed to 

alculate the vacancy formation free energy in Al as a function of 

emperature [146] . Another excellent example of using a special- 

urpose potential (deep NN in this case) is the recent study of the 

ucleation of crystalline Si from the liquid phase [147] . 

The second approach is to assemble a large and highly diverse 

eference database covering as broad a configuration domain as 

ossible, including atomic environments that (1) typically occur 

n atomistic simulations, and (2) are most relevant to the set of 

hysical properties expected to be reproduced by potentials. Sim- 

lations with a potential trained on this database will then oc- 
9 
ur predominantly in the interpolation mode. Theoretically, there 

s still a chance that the simulation will wander away to unex- 

lored territory or will be trapped in a gap (dark pocket) inside 

he reference domain. Nevertheless, some of the recent potentials 

eveloped with this approach, such as the GAP potentials for Si 

109] and C [148] , do reproduce an incredibly broad spectrum of 

hysical properties with high accuracy. Based on the broad applica- 

ility, the developers place these potentials in the general-purpose 

ategory. 

Another usage of ML potentials is to provide surrogate mod- 

ls to accelerate DFT calculations. This approach has been espe- 

ially effective in the area of crystal structure searches [79,98,149–

51] combined with active learning by either structure relaxations 

80,98] or evolutionary algorithms [144,152] . The potential is con- 

tructed as part of the structure search and accelerates the search 

y orders of magnitude compared to high-throughput DFT calcula- 

ions. In some cases, stable binary or ternary structures have been 

evealed that were missed by DFT searches. Acceleration of DFT 

alculations by on-the-fly constructed ML potentials has been pro- 

osed for several other applications, such as the melting temper- 

ture calculations [127] . In all such cases, the ML potential only 

lays the role of a temporary construction not intended for inde- 

endent applications. 

. Physically-informed machine-learning potentials 

As discussed in the previous sections, many of the strengths 

nd weaknesses of the traditional and ML potentials are comple- 

entary to each other ( Table 1 ). A new direction has recently 

merged, aiming to strike a golden compromise between the two 

y taking the best from both worlds. This goal can be achieved 

y choosing a general enough form on a physics-based interatomic 

otential and letting a ML regression predict its parameters accord- 

ng to each atom’s local environment. In contrast to Eq. (2) de- 

cribing a mathematical ML potential, the formula of a physically- 

nformed ML potential is 

 i → G i 
R → p i 

�→ E i , (5) 

ee the flowchart in Fig. 5 . Instead of directly predicting the atomic 

nergy E i , the regression R outputs a set of potential parameters p i 

ost appropriate for the environment of the particular atom i . The 

tomic energy E is then computed with the interatomic potential 
i 



Y. Mishin Acta Materialia 214 (2021) 116980 

�

a

a

n

r

c

t

l

p

a

p

N

f

m

A

a

t

s

e

s

G

t

[

o

p  

t

1  

T

δ  

u  

n

g

m

p

e

s

c

c

[

d

b

c

a  

c

i

t

A

w

p

t

t

a

m

t

e

[

L

o

a

f

b

t

c

t

t

h

m

s

b

a

o

v

s

t

e  

c

t

m

c

p

e

p

o

a

c

b

f

t

i

i

e

d

t

5

a

b

a

f

a

s

t

l

l

b

t

d

T

t

f

b

v

i

v

i

t

p

s

r

r

g

o

t

(R i , p i ) . In other words, the regression output is “piped” through 

 model whose functional form ensures that the energy predictions 

re physically meaningful. Extrapolation to new environments is 

ow guided by the physics embodied in the interatomic potential 

ather than a purely mathematical procedure. 

Any model eventually fails. Physically-informed ML potentials 

an also produce unphysical results when taken too far away from 

he familiar territory. However, the physics-guided extrapolation is 

ikely to expand the potential’s reliability domain compared with 

urely mathematical models ( Fig. 2 c). 

This general idea can be realized with any regression method 

nd any suitable interatomic potential. The recently developed 

hysically-informed neural network (PINN) method [91] relies on a 

N regression and an analytical bond-order potential (BOP) whose 

unctional form is general enough to apply to both metals and non- 

etals. A detailed description of the BOP potential can be found in 

ppendix B. In short, the potential captures pairwise repulsion and 

ttraction of atoms, the bond-order effect (bond weakening with 

he number of bonds), angular dependence of the bond energies, 

creening of bonds by surrounding atoms, and the promotion en- 

rgy. The interactions are limited to a coordination sphere with a 

mooth cutoff. The local atomic environments are represented by 

aussian descriptors specified in Appendix C, but we emphasize 

hat other choices of the descriptors are equally possible. 

The original PINN formulation [91] was recently improved 

92,93] by introducing a global version of the BOP potential trained 

n the entire reference database. After the training, the optimized 

arameters p 

0 = (p 0 
i 1 

, ..., p 0 
im 

) are fixed and become part of the po-

ential definition. Since this parameter set is relatively small ( m ∼
0 ), the error of fitting is usually on the order of 10 2 meV/atom.

he role of the NN is to add to p 

0 a set of local “perturbations”

p i = (δp i 1 , ..., δp im 

) . The final parameter set p i = p 

0 + δp i is then

sed to predict the atomic energy E i = �(R i , p 

0 + δp i ) . The mag-

itudes of the perturbations are kept as small as possible. Their 

oal is to achieve the DFT level of accuracy of the training. In this 

odel, the energy predictions are largely guided by the global BOP 

otential �(R i , p 

0 ) ensuring a smooth and physically meaningful 

xtrapolation outside the training domain. This scheme has been 

hown [92,93] to significantly improve the transferability without 

ompromising the accuracy or increasing the computational cost 

ompared with the original formulation [91] . 

General-purpose PINN potentials have been constructed for Al 

91,92] and Ta [93] , with several other potentials being currently 

eveloped. Both the Al and Ta potentials accurately describe a 

road spectrum of properties of these metals, including the me- 

hanical and thermal properties most relevant to materials science 

pplications. A select set of examples is given in Fig. 6 . A multi-

omponent version of PINN has been formulated and tested, and 

s currently being used to develop binary potentials. The computa- 

ional efficiency of the PINN Al potential has been evaluated [92] . 

lthough the specific numbers depend on the computational soft- 

are, hardware, and the type of tests, as a general guide, the PINN 

otential is two orders of magnitude slower than the EAM Al po- 

ential [153] . The computational overhead due to the BOP poten- 

ial is about 25 % of the total time. Considering that ML potentials 

re orders of magnitude faster than straight DFT calculations, this 

odest overhead can be considered a small price for the improved 

ransferability. 

The general idea of incorporating physics into ML models was 

xplored by several authors in the past. Skinner and Broughton 

28] demonstrated that artificial NNs can be used to construct 

ennard-Jones and Stilliger-Weber potentials. Other authors devel- 

ped ReaxFF, BOP, and other traditional potentials by generating 

 massive DFT database and applying training algorithms adapted 

rom the ML field [154,155] . Drautz’s ACE potentials [84,105] are 

ased on a physics-motivated and physically interpretable clus- 
10 
er expansion containing a set of adjustable parameters. While we 

lassify the ACE potentials as traditional, they include some fea- 

ures of ML potentials, such as local structural descriptors and 

he parameter optimization on a large DFT database. On the other 

and, there is a recent trend to include physics-inspired terms in 

athematical ML potentials. Glielmo et al. [156] described a con- 

truction of n -body Gaussian process kernels that capture the n - 

ody nature of atomic interactions in physical systems. Additional 

nalytical terms mimicking either short-range pairwise repulsion 

r long-range van der Waals interactions are included in recent 

ersions of GAP potentials [109,148] . The parameters describing 

uch terms are fitted separately from the GAP part and then sub- 

racted from the total energy during the training. Perhaps the clos- 

st to the PINN model was the work by Malshe et al. [157] , who

onstructed a Tersoff potential for the Si 5 cluster in which the po- 

ential parameters were controlled by a pre-trained NN. In their 

odel, the potential parameters were not fixed but varied in the 

ourse of MD simulations according to the instantaneous atomic 

ositions. 

The physically-informed ML potentials, of which PINN is one 

xample, do not simply fill the gap between the classical and ML 

otentials but build upon both to create a new and distinct class 

f interatomic potentials. Like traditional potentials, they adopt 

n atomic interaction model explicitly describing diverse physi- 

al effects, such as the many-body character of interactions, the 

ond-order effect, and the bond screening by neighbors. (In the 

uture, more effects can be added, such as magnetism.) By con- 

rast to the traditional potentials, the parameters of the physically- 

nformed ML potentials are dynamic: they are locally adjusted dur- 

ng the simulation in response to the ever-changing local atomic 

nvironments. At the same time, potentials of this class have the 

escriptor-regressor structure shared by all ML potentials and are 

rained on a DFT database using the statistical learning methods. 

. Summary and outlook 

ML potentials have emerged as a powerful new tool for materi- 

ls modeling and new materials discovery. When used within the 

oundaries of validity, an ML potential can predict the energy and 

tomic forces with nearly DFT accuracy but orders of magnitude 

aster. The computational time scales linearly with the number of 

toms N, easily beating the computational efficiency of the N 

3 - 

caled DFT calculations for large systems. This enables researchers 

o extend DFT-level calculations to much larger systems and much 

onger MD simulation times. The development of ML potentials is 

everaged by the availability of massive DFT databases generated 

y high-throughput calculations. The accuracy of the ML poten- 

ials can be improved systematically by augmenting the reference 

atabase with new structures and continuing the training process. 

he flexibility of the ML potentials is enormous. The same poten- 

ial format and the same training algorithm can be applied to dif- 

erent classes of materials regardless of the nature of the chemical 

onding. 

Like any model, ML potentials have their limitations. In our 

iew, the major limitation is the lack of physics-based transferabil- 

ty to unknown structures. Other than smoothness, locality, and in- 

ariance of energy, no physics specific to the particular system is 

ncluded in the ML potential. Being purely mathematical construc- 

ions, ML potentials are little more than accurate numerical inter- 

olators of DFT databases. Predictions of physical properties out- 

ide the interpolation domain are based on a mathematical algo- 

ithm and can give uncontrollable and often physically meaningless 

esults. The risk of generating inaccurate predictions can be miti- 

ated by monitoring the simulation process to detect departures 

f the trajectory from the training domain. Another approach is 

o develop the potential concurrently with the DFT database con- 
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Fig. 6. Examples of properties calculated with the PINN potentials for (a-d) Al [92] and (e-h) Ta [93] . (a) Phonon dispersion relations computed with the PINN potential 

(curves) compared with experimental data (points). (b) Linear thermal expansion relative to room temperature predicted by the PINN potential (points) compared with 

experiment (curve). (c) Simulation block used for computing the solid-liquid interface tension by the capillary fluctuation method. (d) MD simulation of crack nucleation 

and growth on a grain boundary. (e,f) γ -surfaces in body-centered cubic Ta on (110) and (112) planes, respectively. (g) Nye tensor plot of the core structure of the 1 
2 〈 111 〉 

screw dislocation in Ta predicted by the PINN potential. (h) Peierls barrier of the 1 
2 〈 111 〉 screw dislocation predicted by the PINN potential (lines) in comparison with DFT 

calculations (points). 
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truction (e.g., by on-the-fly training). The system will then likely 

emain within the training domain as long as the simulation re- 

ains similar to those used during the training. 

The only way to ensure that the extrapolation to unknown con- 

gurations makes physical sense is to inform the model about 

ome basic rules of physics. This approach is pursued by the pro- 

osed physically-informed ML potentials. The integration of an ML 

egression with a physics-based interatomic potential preserves 

he DFT accuracy of training without increasing the number of 

tting parameters or paying any significant computational over- 

ead. At the same time, the transferability is improved compared 

ith purely mathematical models, opening the door for the de- 

ign of general-purpose ML potentials. The NN-based PINN poten- 

ials demonstrate a promise of this approach 

9 and could serve as 

 springboard for developing similar models with other choices of 

he regression model, descriptors, or the physics-based potential. 

Many materials science applications require the development 

f reliable potentials for alloy systems. The ability of ML poten- 

ials to reproduce alloy properties across wide composition ranges, 

ncluding phase diagram calculations, has been recently demon- 

trated [133,158] . It should be noted that the application of both 

raditional and ML potentials to multicomponent systems is not as 

traightforward as in DFT calculations. Each time we add a new 

hemical element to the system, a new potential must be con- 

tructed, which is a demanding task. ML potentials overcome the 

roblem of incompatible functional forms between the metallic 

nd nonmetallic elements inherent in the traditional potentials. 

On the other hand, most of the traditional potentials are “inher- 

table”. Existing elemental potentials can be included into a binary 

otential by only fitting the cross-interaction parameters; the bi- 

ary potential can be thencrossed with another elemental potential 

o obtain a ternary potential, and so on. This strategy saves effort s 

nd enables accurate comparison of alloy systems formed by the 

ame base element with different solutes. Most of the ML poten- 
9 The improved transferability of PINN potentials has been demonstrated by com- 

arison with NN potentials [91] and other purely mathematical ML models (unpub- 

ished). Comparison with the recent GAP potentials containing physically-inspired 

nalytical terms [109,148] will require additional work in the future. 

fi

b

a

t

r

11 
ials are incapable of inheriting elemental potentials. This unfortu- 

ate feature may result in a proliferation of different potentials for 

he same element developed as a stand-alone potential or as part 

f binaries or ternaries. This is not a severe problem for the “make 

t and forget it” potentials, such as the surrogate models or some 

f the special-purpose potentials constructed for just one particu- 

ar simulation. However, for broadly applicable potentials intended 

or multi-purpose utilization by many groups, the inheritance is a 

ighly desirable feature. For NN potentials, a stratified construc- 

ion procedure was proposed [75] and successfully applied to the 

volutionary structure searches in multicomponent systems. In the 

uture, generating accurate general-purpose potentials by this or 

imilar procedures could be pursued. It is worth exploring if other 

orms of ML potentials could also be modified to enable the inher- 

tance feature. 

When the traditional interatomic potentials first appeared in 

he 1980s, initially the main focus was on demonstrating their ca- 

abilities. The initial excitement about their ability to make quan- 

itative predictions was followed by recognizing their limitations 

nd a better understanding of the application domain. In the mid- 

990s, the field entered a new phase in which the focus shifted 

oward practical applications. The method development still con- 

inued: many new potentials were constructed, several simulation 

ackages were developed, and repositories of existing potentials 

egan to grow. However, the main goal of the atomistic simula- 

ions became to gain some new knowledge about the materials. 

he following question could now be asked and often answered: 

hat have we learned about the material from this simulation that 

e did not know previously? Eventually, the potential-based simu- 

ations took their proper place among other computational tools 

perating on different length and time scales. 

The ML potential field is likely to undergo a similar evolution. 

t is currently on the rising branch of the hype curve. The pub- 

ication rate is rising rapidly as new groups are drawn into the 

eld by the high promise of the ML potentials and/or fascination 

y all things ML. The overwhelming majority of the publications 

re concentrated on the method development: demonstration of 

he new capabilities, the search for more effective descriptors and 

egression models, design of new algorithms to optimize and au- 
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omatize the DFT database construction, and computational bench- 

arking. Most of the ML potentials published so far are proof-of- 

rinciple type, rarely used by other groups after the publication. In 

ost cases, the success is measured by the ability of the potential 

o reproduce already known (although often complex) structures 

r properties. While very important for the method development, 

hese effort s per se do not generate new knowledge of the materi- 

ls. 

The overexcitement will eventually subside, and ML potentials 

ill become an integral part of the standard toolkit for materials 

odeling alongside other methods. The focus will gradually shift 

oward answering the “What have we learned about the material”

uestion. Recent years have already seen several applications of 

L potentials that begin to generate new knowledge of physics 

nd/or materials [24] . Such applications typically rely on special- 

urpose potentials, often created as surrogate models interpolat- 

ng a DFT database. A GAP potential for the phase-change Ge-Sb-Te 

aterial [159] was used to generate an ensemble of representa- 

ive glass structures, which helped understand the electronic na- 

ure of mid-gap defect states in memory materials [160] . GAP po- 

entials have provided new insights into the energetics and struc- 

ures of the numerous hypothetical polymorphs of carbon, boron, 

nd phosphorous [98,110,131,148,149,161] . Caro et al. [162] applied 

 GAP potential to elucidate the mechanisms of amorphous car- 

on growth [162] . A deep NN Si potential combined with meta- 

ynamics helped understand the early stages of nucleation during 

i crystallization from the melt [147] . We especially emphasize the 

ecent applications of ML potentials to the modeling of metallur- 

ical processes, such as precipitation hardening in Al-based alloys 

76,126] and the deformation behavior of magnesium alloys [163] . 

he leading thread of these papers is still the demonstration of 

apabilities of ML potentials compared with traditional potentials. 

owever, these papers turn the ML potential field toward the core 

roblems of classical metallurgy. 

We envision that, within the next several years, most of the 

ethodology will be established, and the field will enter the sec- 

nd phase focused on discovering new and/or explaining known 

aterials phenomena or predicting properties that cannot be com- 

uted otherwise. We also believe that the field will turn around to 

hysics by integrating the remarkable flexibility and adaptivity of 

he mathematical ML potentials with tighter guidance from physi- 

al models. 
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ppendix A. Table of abbreviations 

ACE Atomic cluster expansion 

AIMD Ab initio molecular dynamics 

BOP Bond order potential 

FCC Face-centered cubic 

DFT Density functional theory 

( continued ) 
12 
GAP Gaussian approximation potential 

LAMMPS Large-scale atomic/molecular massively parallel simulator 

MC Monte Carlo 

MD Molecular dynamics 

ML Machine learning 

MTP Moment tensor potential 

NN Neural network 

PES Potential energy surface 

PINN Physically-informed neural network 

SNAP Spectral neighbor analysis potential 

SOAP Smooth overlap of atomic positions 

VASP Vienna ab initio simulation package 

ppendix B. The bond-order potential in PINN 

In this Appendix, we briefly describe the BOP potential adopted 

n the PINN model [91–93] . A single-component material is consid- 

red for simplicity. The energy of atom i is given by the expression 

 i = 

1 

2 

∑ 

j � = i 

[
e A i −αi r i j − S i j b i j e 

B i −βi r i j 

]
f c (r i j , d, r c ) + E (p) 

i 
. (B.1) 

he summation runs over neighbors j of atom i separated from it 

y a distance r i j . The interactions are smoothly truncated at the 

utoff distance r c using the cutoff function 

f c (r, r c , d) = 

{
(r−r c ) 

4 

d 4 +(r−r c ) 4 
r ≤ r c 

0 , r ≥ r c , 
(B.2) 

here the parameter d controls the width of the truncation re- 

ion. The exponential terms in Eq. (B.1) describe the repulsion be- 

ween the atoms at short separations and attraction (bonding) at 

arge separations. The bonding term includes the bond-order effect 

hrough the coefficient 

 i j = (1 + z i j ) 
−1 / 2 , (B.3) 

here z i j approximately represents the number of bonds formed 

y the atom i . The bonds are counted with weights depending on 

he bond angles θi jk : 

 i j = 

∑ 

k � = i, j 

a i S ik 
(
cos θi jk − h i 

)
2 f c (r ik , d, r c ) . (B.4) 

n addition, all bonds are screened by surrounding atoms. The 

creening factor S i j of a bond i − j is defined by the product 

 i j = 

∏ 

k � = i, j 

S i jk (B.5) 

f partial screening factors S i jk representing the contributions of 

ndividual atoms k : 

 i jk = 1 − f c (r ik + r jk − r i j , d, r c ) e 
−λi (r ik + r jk −r i j ) , (B.6)

here λi is the inverse of the screening length. S i jk has a constant 

alue on a spheroid whose poles coincide with the atoms i and 

j. The cutoff spheroid defined by the condition r ik + r jk − r i j = r c 
ncompasses all atoms k contributing to the screening. The closer 

he atom k to the bond i − j, the smaller is S i jk and the larger is its

ontribution to the screening. For an atom k located on the bond 

 − j, S i jk = 1 − f c (0 , d, r c ) 
 1 and the bond is almost completely

creened (broken). Finally, the on-site energy 

 

(p) 
i 

= −σi 

( ∑ 

j � = i 
S i j b i j f c (r i j ) 

) 

1 / 2 (B.7) 

epresents the promotion energy for covalent bonding and the em- 

edding energy in metals. In the latter case, E 
(p) 
i 

can be recast in 

he form 

 ( ̄ρ ) = −σ ( ̄ρ ) 1 / 2 , (B.8) 
i i i 

https://doi.org/10.13039/100000006


Y. Mishin Acta Materialia 214 (2021) 116980 

w

ρ

h  

a

i

(  

r

p

n

t

t

ν

A

a

q

s

a

i

t

g , l max

w

t

 

o

f  

l

t

t  

p

ρ

o

C

A

g

w

o

s

i

i  

a

 

s

i  

T

v

g  

c

n

f

m

p

c

R

 

 

 

 

 

 

here 

¯i = 

∑ 

j � = i 
S i j b i j f c (r i j ) (B.9) 

as the meaning of the host electron density on atom i . Eq. (B.8) is

 particular form of the embedding energy function F ( ρ) appear- 

ng in the EAM method. 

The BOP potential depends on ten parameters, eight of which 

 A , B , α, β , a , h , λ and σ ) are locally adjusted by the NN. In the cur-

ent formulation of the PINN model, d and r c are treated as global 

arameters. Accordingly, the output layer of the NN contains m = 8 

odes. In the multicomponent version of PINN, the BOP parame- 

ers depend on the chemical species of the atoms. For example, 

he parameter A i becomes A 

νν ’ 

i 
with the additional indices ν and 

′ indicating the chemical species of atoms i and j, respectively. 

ppendix C. Local structural descriptors in PINN 

In this Appendix we describe the local atomic descriptors 

dopted in the PINN model. While these descriptors performed 

uite well in our tests, we do not claim that they are necessarily 

uperior to all other descriptors proposed in the literature or form 

 complete set of basis functions. 

For a single-component material, the local environment of atom 

 is encoded in a set of rotationally-invariant three-body parame- 

ers 

 

(l) 
i 

(r 0 , σ ) = 

∑ 

j � = i,k � = i 
P l 
(
cos θi jk 

)
f (r i j , r 0 , σ ) f (r ik , r 0 , σ ) , l = 0 , 1 , 2 , ...

(C.1) 

here P l (x ) are Legendre polynomials of orders l. The radial func- 

ion is the Gaussian 

f (r, r 0 , σ ) = 

1 

r 0 
e −(r−r 0 ) 

2 /σ 2 

f c (r, 1 . 5 r c , d) (C.2)

f width σ centered at point r 0 . Note that the truncation radius 

or this function is 1 . 5 r c to include the positions of atoms j and k

ying outside the cutoff radius r c but affecting the atomic energy 

hrough the screening effect. 

Equation (C.1) is motivated by considering a set of basis func- 

ions F nlm 

(r ) = f nl (r) Y lm 

( ̂ r ) with n, l = 0 , 1 , 2 , ... and −l ≤ m ≤ l. A

rojection of the local atomic density around atom i , 

(i ) (r ) = 

∑ 

j � = i 
δ(r − r i j ) , 

n a basis function F nlm 

(r ) is 

 

(i ) 
nlm 

= 

∑ 

j � = i 
f nl (r i j ) Y 

∗
lm 

( ̂ r i j ) . 

 rotationally invariant descriptor is formed by the summation 

 

(i ) 
nn ′ l = 

l ∑ 

m = −l 

C (i ) ∗
nlm 

C (i ) 
n ′ lm 

= 

∑ 

j � = i,k � = i 
P l 
(
cos θi jk 

)
f nl (r i j ) f n ′ l (r ik ) , 

here we used the summation theorem of spherical harmonics. To 

btain Eq. (C.1) , we represent the radial functions f nl (r) by Gaus- 

ians (C.2) , make them independent of the index l, and use the 

ndex n to enumerate the Gaussian positions r 0 . The summation 

n Eq. (C.1) includes the terms with j = k , which generate a set of

dditional, single-bond (two-body) descriptors. 

A set of Gaussian parameters 

{ 

r (n ) 
0 

, σ (n ) 
} 

, n = 1 , 2 , ..., n max , is

elected and the coefficients sinh 

−1 
[ 

g (l) 
i 

(r (n ) 
0 

, σ (n ) ) 
] 

are arranged 

n an array G i = (G 

1 
i 
, G 

2 
i 
, ..., G 

K 
i 
) of the fixed length K = l max n max .

his array serves as the feature vector representing the atomic en- 

ironments and fed into the K-node input layer of the NN. 
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, 

In the multicomponent version of PINN, the parameters 

 

(lνν′ ) 
i 

(r 0 , σ ) are calculated as above for each choice of the chemi-

al species ν of the atom i and the chemical species ν and ν ′ of the 

eighboring atoms j and k . The multicomponent descriptor G i is 

ormed by juxtaposition these parameters. In an alternative imple- 

entation, the index ν can be droped. The size of the multicom- 

onent G i grows as the square or cube of the number of chemical 

omponents, depending of the implmentation. 
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